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Abstract: LANDFIRE (LF) National (2001) was the original product suite of the LANDFIRE program, 
which included Existing Vegetation Cover (EVC), Height (EVH), and Type (EVT). Subsequent 
refnements after feedback from data users resulted in updated products, referred to as LF 2001, 
that now served as LANDFIRE’s baseline datasets and are the basis for all subsequent LANDFIRE 
updates. These updates account for disturbances and vegetation transition changes that may not 
represent current vegetation conditions. Therefore, in 2016 LANDFIRE initiated the Remap prototype 
to determine how to undertake a national-scale remap of the LANDFIRE primary vegetation datasets. 
EVC, EVH, and EVT were produced (circa 2015) via modeling for ecologically variable prototyping 
areas in the Pacifc Northwest (NW) and Grand Canyon (GC). An error analysis within the GC 
suggested an overall accuracy of 52% (N = 800) for EVT, and a goodness of ft of 51% (N = 38) for 
percent cover (continuous EVC) and 53% (N = 38) for height (continuous EVH). The prototyping 
effort included a new 81-class map using the National Vegetation Classifcation (NVC) within the NW. 
This paper presents a narrative of the innovative methodologies in image processing and mapping 
used to create the new LANDFIRE vegetation products. 

Keywords: decision tree classifcation; Landsat; lidar; regression tree classifcation; vegetation 
mapping; vegetation structure 

1. Introduction 

Planning for wildfre management requires comprehensive vegetation and related fuel base 
layers [1]. At a minimum, these input datasets need to provide wall-to-wall coverage, identify dominant 
vegetation groups that exhibit different burning characteristics and identify fuel characteristics that 
change fre behavior [2]. The LANDFIRE program has undergone several iterations of producing 
datasets for the conterminous United States, Alaska, and Hawaii to meet the needs of LANDFIRE data 
users and to refect a constantly changing land surface [3–6]. LANDFIRE has continued its evolution as 
a program by making calculated improvements based on lessons learned, better computing capabilities, 
new partners, additional plot-level training data, improved Landsat image compositing methods, 
and incorporating new data sources. These advances informed the prototyping effort leading to new 
foundational datasets on which LANDFIRE Remap is based [7]. 
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LANDFIRE (LF) 2001 was a joint 5-year project between the U.S. Department of Agriculture 
(USDA) Forest Service and U.S. Department of the Interior (DOI) to provide vegetation and fuel 
datasets for the conterminous United States circa 2001 [6]. A foundation for this suite of data products 
was the LANDFIRE Reference Database (LFRDB), which was developed to hold ground-referenced 
plot data information about vegetation types and structure metrics (i.e., height and cover). Data sources 
included Forest Inventory and Analysis (FIA), U.S. Geological Survey (USGS) National Gap Analysis 
Program (GAP), the Nature Conservancy, and other federal, state, and local datasets [6]. 

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) are the foundational 
geospatial datasets used by LANDFIRE. Descriptions of the Landsat bands and indices used by 
LANDFIRE are shown in Table 1a,b, respectively. TM and ETM+ images were not available 
cost-free during the production timeframe of LF 2001; however, LANDFIRE was a member of 
the Multi-Resolution Land Characteristics (MRLC) Consortium [8], which gave the program access to 
any previously purchased Landsat scenes. Landsat scenes not in the MRLC archive were purchased 
to meet the goal of three cloud-free images per Landsat World Wide Referencing System 2 (WRS2) 
Path/Row for the conterminous United States, Alaska, and Hawaii [6]. Additional remotely sensed 
data sources including a digital elevation model (DEM), slope, elevation, and biophysical gradients 
(e.g., temperature and precipitation) were also acquired or produced as needed. 

Classifcation and regression tree (CART) models were developed to determine vegetation types, 
while regression tree models were used to classify vegetation structure [6]. Modeled outputs included 
Existing Vegetation Type (EVT), Existing Vegetation Cover (EVC), and Existing Vegetation Height 
(EVH). Subsequent relationships between EVT, EVH, and EVC were developed to provide information 
for fuel characterizations. For LF 2001, there were 706 different vegetation classes in the EVT layer 
within the conterminous United States, Alaska, and Hawaii. EVC classifcations were binned by 
lifeform, including barren (no vegetation), sparse (<10% vegetation cover), herb, shrub, and tree 
categories, and ranged from 1%–100% by 10% increments. EVH classifcations were also binned into 
the same lifeform categories as EVC, and were further binned into 0–0.5, 0.5–1.0, and >1.0 m bins 
for herbs, 0–0.5, 0.5–1.0, 1.0–3.0, and >3.0 m bins for shrubs, and 0–5, 5–10, 10–25, 25–50, and >50 m 
bins for trees. For this paper, we are mainly concerned with the development of EVT, EVC, and EVH 
products and not focused on how derivatives of those products are created. 

Subsequent iterations of LANDFIRE, including LF 2008, LF 2010, LF 2012, and LF 2014, consist 
of updated yearly EVT, EVC, and EVH products adjusted according to disturbance type for each 
year between 1999 and 2014 [4,5,9]. Landsat was again the base dataset used in the mapping process; 
however, because Landsat TM and ETM+ data became freely available after 2008 [10], the cost of 
Landsat was no longer a constraint, and in 2010 a Landsat compositing method was developed to 
better leverage all the available Landsat data [11]. Additionally, Landsat Operational Land Imager 
(OLI) data became available in 2013 [12], which increased data availability and subsequently enabled 
the development of new data intensive approaches for the image compositing process. 

For each iteration of LANDFIRE, disturbance was classifed from imagery using change detection 
algorithms (e.g., forest clear-cut and regeneration); from maps provided by partners (e.g., forest 
clear-cut and fre perimeters); and by analyst visual interpretation [5]. For disturbed areas, state and 
transition models were used to predict the current vegetation state of EVT and projected effects on 
the removal and subsequent regrowth of vegetation over time in EVC and EVH. LANDFIRE EVT, 
EVH, and EVC products LF 2008, LF 2010, LF 2012, and LF 2014 are therefore updated versions of 
LANDFIRE post-National (LF 2001). 
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Table 1. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational 
Land Imager (OLI) bands, band wavelengths (a), spectral indices, and spectral index (b) equations used 
during the LANDFIRE prototyping effort. TM and ETM+ bands and wavelengths are indicated by *, 
while OLI bands and wavelengths are indicated by **. 

(a) 

Landsat Band Wavelength Equation 

0.45–0.515 µm* 
Band 1*, 2** 0.452–0.512 µm** X 

(Blue) 

0.525–0.605 µm* 
Band 2*, 3** 0.533–0.590 µm** X 

(Green) 

0.63–0.69 µm* 
Band 3*, 4** 0.636–0.673 µm** X 

(Red) 

0.76–0.90 µm* 
Band 4*, 5** 0.851–0.879 µm ** X 

(Near Infrared; NIR) 

1.55–1.75 µm* 
Band 5*, 6** 1.566–1.651 µm** X 

(Shortwave Infrared; SWIR1) 

2.08–2.35 µm* 
Band 7*, 7** 2.107–2.294 µm** X 

(Shortwave Infrared; SWIR2) 

(b) 

Spectral Index Wavelength Equation 

Normalized Differenced 
Vegetation Index (NDVI) X NIR − Red 

NIR + Red 

Normalized Burn Ratio 
(NBR) X NIR − SWIR2 NIR − SIR2 

NIR + SWIR2 NIR + SIR2 

Modifed Normalized Differenced 
Water Index (MNDWI) X Green − SWIR1 Green − SIR1 

Green + SWIR1 Green + SIR1 

Modifed Soil Adjusted Vegetation 
Index (MSAVI) X 

q 
2NIR+0.5−( 0.5∗ ((2NIR+1) −8(NIR−(2Red)))) 

(NIR+Red+0.5) 

Soil Adjusted Total Vegetation 
Index (SATVI) X SWIR1−Red SWIR2 

SWIR1+Red+0.5 (1.5) − 2 

Tasseled Cap Brightness 
(TCbrightness) X 0.3029(Blue) + 0.2786(Green) + 0.4733(Red) + 

0.5599(NIR) + 0.508(SWIR1) + 0.1872(SWIR2) 

Tasseled Cap Greenness 
(TCgreenness) X −0.2941(Blue) − 0.243(Green) − 0.5424(Red) + 

0.7276(NIR) + 0.0713(SWIR1) − 0.1608(SWIR2) 

Tasseled Cap Greenness 
(TCwetness) X −0.1511(Blue) + 0.1973(Green) + 0.3283(Red) + 

0.3407(NIR) − 0.7117(SWIR1) − 0.4559(SWIR2) 

EVT uses the Ecological Systems (ES) classifcation that was available at the time of LANDFIRE 
National [13]. As part of Remap prototyping, LANDFIRE evaluated the United States National 
Vegetation Classifcation (http://usnvc.org/, accessed 11 June 2019; NVC) as a second classifcation 
system for EVT. NVC is a vegetation classifcation scheme that follows the FGDC (2008; Federal 
Geographic Data Committee) recommendations and is composed of a nested hierarchy of eight 
levels [14,15]. Of these eight levels, the LANDFIRE Remap prototyping effort focused on the NVC 
Level 6 Group classifcation. The Group classifcation can include multiple plant species that are 
aggregated by a dominant growth form that is representative of a climatic, hydrologic, edaphic, and 
disturbance regime [15]. There are potentially 426 Groups within the United States as determined by 
regional experts (see http://usnvc.org/ for all classes) [16]. In this work, we focus on a subset of the 
Groups that occurred within the Pacifc Northwest (NW) prototype area. 

The aim of the LANDFIRE Remap prototyping effort is to better represent current landscape 
conditions (i.e., LANDFIRE base maps) based on the latest data to address known issues within the 

http://usnvc.org/
http://usnvc.org/
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existing LANDFIRE datasets. Specifcally, the LANDFIRE Remap effort will fx seam-line artifacts 
(i.e., abrupt transitions between vegetation classes) correlated to the input data, provide product 
accuracy assessments, revise product legends, address past user concerns as maintained in LANDFIRE’s 
database, and introduce a new NVC Group product. The efforts will result in more current base 
maps, independent of LF 2001 products, with all products being “remapped” from start to fnish. 
In 2015, an initial small-scale prototyping effort was undertaken in the Clear Creek, Idaho, area to 
investigate new datasets and mapping methodologies [7]. The prototype area was subsequently 
expanded to a larger area in the NW. The majority of the Grand Canyon (GC; Arizona, USA) was later 
added as an additional prototype site to take advantage of extensive lidar datasets that were available. 
The large-scale LANDFIRE Remap prototyping effort began in summer 2016 with the overall goal to 
develop the foundational techniques to produce new LANDFIRE EVT, EVH, EVC, and NVC base 
products. The prototype was concluded one year later to kick off the Remap production effort. This 
paper (1) explains LANDFIRE Remap prototyping of methodologies and datasets used, (2) quantifes 
potential improvements in the prototype’s EVC, EVH, and EVT products over past LANDFIRE 
products, and (3) provides insight into the current LANDFIRE Remap production processes. 

2. Materials and Methods 

2.1. Prototype Areas 

Two different geographic regions, the Pacifc Northwest (NW) and Grand Canyon (GC), were 
examined (Figure 1). These regions were chosen for their variability in edaphic characteristics, 
precipitation, elevation, temperature, and vegetation conditions. The NW region includes all of 
Washington and Oregon, and parts of Idaho, California, and Nevada, while the GC region covers 
parts of Arizona, Colorado, New Mexico, and Utah (Figure 1). Elevation ranges from 0–4392 m 
in the NW and 21–3851 m in the GC. Precipitation varies the most widely in the NW with values 
ranging from 14–358 cm. In the GC, precipitation ranges from 14 to 80 cm (National Oceanic and 
Atmospheric Administration [NOAA] National Centers for Environmental Information, Climate at 
a Glance: US Time Series, Precipitation, published January 2018, retrieved on 30 January 2018 from 
http://www.ncdc.noaa.gov/cag/). Temperatures are highly variable in the NW, ranging from −47 to 
48 ◦C, and from −40 to 47 ◦C in the GC (NOAA National Centers for Environmental Information, 
Climate at a Glance: US Time Series, Temperature, published January 2018, retrieved on 30 January 2018 
from http://www.ncdc.noaa.gov/cag/). These large climatic ranges result in a wide array of vegetation 
systems within the prototyping areas. 
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Figure 1. Location map of the Pacifc Northwest (NW) (blue) and Grand Canyon (GC) (red) overlain 
the US. Each LANDFIRE tiled area is 10,000 × 10,000 thirty-meter pixels, except for the northwestern 
most tile (20,000 × 10,000 pixels). 
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2.2. Data Sources 

Many geospatial data sources including Landsat imagery, feld plot measurements, DEM, ancillary 
data layers (e.g., the National Land Cover Database [NLCD]), and disturbance information were 
used during the LANDFIRE Remap prototyping effort. While Landsat imagery and the feld plot 
observations form the foundational datasets, other geospatial data were leveraged to improve accuracy 
and processing efficiency. Landsat data were corrected to surface refectance [17,18] using the USGS 
Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) [19] 
processing system (https://espa.cr.usgs.gov/, accessed 12 June 2019), reprojected to USA Albers Equal 
Area Conic, and resampled to 30 m. Using high-performance computing architecture, multiple Landsat 
scenes were stacked and ranked pixel by pixel to produce a cloud-free image composite. This process, 
known as best-pixel image compositing [11], was conducted within a tiling framework covering the 
extent of both prototyping locations (see Figure 1 for NW and GC LANDFIRE tiles). A total of 7637 
and 27,921 Landsat scenes were processed for the GC and NW, respectively (Figure 2). 
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Figure 2. Number of Landsat scenes processed for the disturbance and Remap vegetation mapping 
products circa 2015 within Grand Canyon and Northwest prototype areas. The number of scenes 
processed is further broken down by Landsat sensor, including Enhanced Thematic Mapper Plus 
(ETM+, L7) and Operational Land Imager (OLI, L8). 

Two compositing strategies were used, one for disturbance mapping and another for vegetation 
mapping. The frst was previously developed by LANDFIRE to be used for mapping disturbance 
(i.e., LF 2010, LF 2012, and LF 2014) and is based upon imagery from two periods of time within the 
same calendar year, including early season (Julian days 135–227) and late season (Julian days 228–306) 
composites. Landsat imagery within the Julian date ranges is obtained from the Landsat archive 
(https://earthexplorer.usgs.gov/, accessed 11 June 2019) for each year of interest, placed in a virtual stack 
of all images, and processed to the specifcations established in the best-pixel algorithm [11]. As an 
example, to identify disturbance in 2015, early and late season best-pixel composites are produced 
by year for 2014, 2015, and 2016. By limiting the imagery in each composite to a single year, each 
disturbance can be labeled by the year it is detected. This is important when applying transition logic 
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to the vegetation products (e.g., time since disturbance). The disturbance composites were used to 
create differenced spectral indices designed for detecting change. To determine whether a change 
in vegetation occurred between years, the current year’s (i.e., 2015) Normalized Burn Ratio (NBR; 
Table 1b) values were subtracted from the previous year’s NBR values (i.e., 2014) to calculate the 
differenced NBR (dNBR) for both the early and late seasons. Other derivative products used for 
identifying change include the Normalized Difference Vegetation Index (NDVI) (Table 1b) and the 
Multi-Index Integrated Change Detection Algorithm (MIICA) [20]. 

The second compositing strategy uses imagery from a user-defned target year and the surrounding 
years to create a spectral composite without data gaps (areas of no data) or anomalies suited to detecting 
spectral differences among vegetation types. Unlike the disturbance-based composites, the vegetation 
composites can combine data from multiple years, which broadens the depth of available data and 
helps to reduce or eliminate data holes. For this prototype, the target year is 2015, so the composited 
imagery used for classifcation is referenced as circa 2015. Three Julian date ranges of imagery were 
chosen for compositing, including Julian days 106–178 (spring image), 179–244 (summer image), and 
245–305 (fall image), to better distinguish the phenological variation in vegetation captured by Landsat 
spectral values due to changes in the amount of daylight, temperature, or precipitation [21]. Most 
pixels in the composites are from 2015, but data from 2013, 2014, and 2016 can be present where data 
gaps in 2015 exist. 

Similar to the disturbance composites, derivative products were produced from the vegetation 
composite imagery, including the Modifed Normalized Differenced Water Index (MNDWI; Table 1b), 
Modifed Soil Adjusted Vegetation Index (MSAVI; Table 1b), Soil Adjusted Total Vegetation Index 
(SATVI; Table 1b), Tasselcap Brightness (TCbrightness; Table 1b), Tasselcap Greenness (TCgreenness; 
Table 1b), and Tasselcap Wetness (TCwetness; Table 1b) indices from the vegetation composite Landsat 
imagery. A greater number of Landsat scenes were processed for the vegetation mapping effort than 
for the disturbance mapping effort for the GC and the NW (Figure 2). 

Additional datasets, reprojected to Albers Equal Area Conus and resampled to a 30-m pixel space, 
included elevation, slope, and aspect derived from DEM [22]. As with previous versions of LANDFIRE, 
this effort incorporated vegetation products from the National Land Cover Database (NLCD) [23], 
agricultural lands from the National Agricultural Statistics Service Cropland Data Layer (NASS CDL) [24], 
and roads and urban areas from National Transportation Statistics (http://osav-usdot.opendata.arcgis.com/, 
accessed 11 June 2019). The LANDFIRE 2014 Update and the Remap prototyping effort also utilized 
the Burned Area Essential Climate Variable (BAECV) [25] to assign the causality of possible burned 
areas in the disturbance product. 

New datasets used for the LANDFIRE Remap prototype effort were derived from the Dynamic 
Surface Water Extent (DSWE) [26] product, NLCD 2016 Wetlands Potential product [27], NLCD 2011 
Developed Imperviousness product [23], Level III ecoregions of Omernik [28], and watershed subbasins 
from a 4-digit Hydrologic Unit Code (HUC4 [29]). Furthermore, multiple airborne lidar datasets 
were obtained for the NW and GC Remap prototype areas to enhance vegetation structure mapping 
training data. 

Like the LANDFIRE Refresh [4] and Update [5] efforts, the LANDFIRE Remap prototyping 
effort has compiled maps of natural and anthropogenic disturbances (Events) submitted by partners. 
Disturbance Events include national products, such as burn severity and perimeter products from 
Monitoring Trends in Burn Severity (MTBS) [30], Burned Area Emergency Response (BAER) [31], 
and Rapid Assessment of Vegetation (RAVG) [32]. LANDFIRE also receives Events data that detail 
date, location (i.e., polygon), and causality from federal, tribal, state, local, and private entities. 
Common examples of disturbance causality include fre, logging, thinning, insects, disease, and 
weather. If multiple Events overlap during the same year, then the event determined to be the most 
severe is kept as the label of causality [4]. 

The LFRDB is the other important dataset compiled for the prototyping effort, which has been 
used in all iterations of LANDFIRE products. The total number of referenced data plots assembled 

http://osav-usdot.opendata.arcgis.com/
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within the LFRDB was 100,799 in the NW and 13,246 in the GC prototype areas, of which approximately 
50% have enough plant species information to be labeled with an EVT or NVC class. Important 
plot labels included lifeform (including barren, sparse, herb, shrub, or tree), Ecological Systems (ES) 
EVT, NVC Groups, percent cover, height, and geospatial location if not covered by a confdentiality 
agreement (e.g., FIA). Plot labels for ES EVT and NVC Groups were assigned using Auto-Keys updated 
for Remap [13]. 

2.3. Mask Development 

We created binary masks to assist in the mapping process of vegetation classes that were difficult 
to model or control where they were mapped in a fnal product (see Section 2.6). Binary masks were 
developed for Level III ecoregions, alpine systems, water, barren areas, sparsely vegetated areas, and 
riparian areas that leveraged the previously mentioned ancillary datasets. The simplest binary masks to 
create were the Level III ecoregion binary masks. LANDFIRE National had previously used the MRLC 
Consortium mapping zones as binary modeling masks [22]. During the Remap prototyping effort, we 
determined that the MRLC map zones were too coarse for mapping EVT groups (unpublished data), 
which do not occur throughout the entirety of the mapping zone, resulting in errors of commission. 
Level III masks were therefore developed to restrict the mapping of EVT classes to specifc ecoregions. 
LANDFIRE tiles were intersected with each Level III ecoregion, and a binary mask was then created 
for each tile and ecoregion resulting in 40 binary masks for NW and nine masks for GC. 

An alpine mask was created to help restrict the mapping of alpine EVT classes to alpine areas in 
the NW prototype area. One DEM per prototype area was binned into 100-m elevation increments. 
This elevation class raster was intersected with HUC4 subbasins and Level IV ecoregions to develop 
unique classes of elevation subbasin and ecoregion. The resulting classifed data were then intersected 
with GAP alpine vegetation classes. If a given subbasin ecoregion unit was found to be more than 
25% alpine GAP classes it was coded as 1, while all other units less than 25% alpine GAP classes were 
coded as 0. 

To create a binary water mask (i.e., water or non-water), all 2013–2015 DSWE Essential Climate 
Variable products were acquired for a total of 4071 in GC and 18,188 in the NW. The DSWE algorithm 
uses several spectral and slope tests to determine the likelihood of water presence per pixel [26]. 
Wherever a pixel was mapped as high confdence water (value = 1) in the DSWE products more 
than fve times during the 5-year period, the pixel was coded as water in the water mask. We used a 
threshold of fve because of some commission errors in DSWE products, mostly in dark non-water 
areas such as lava beds, non-masked cloud shadows, and within urban areas. A subsequent 3 × 3 pixel 
neighborhood dilation function was then used to connect potential water in neighboring pixels. Because 
this dilation function may add commission errors to the water mask, the summer Landsat vegetation 
composite MNDWI, MSAVI, and SATVI values were assessed to determine whether the dilated pixel 
should be labeled as land or water. If not water, then the dilated pixel’s value was changed to 0. 

The creation of riparian masks for NW and GC prototyping areas required that we identify where 
wetlands occurred within valley bottoms. We subsequently developed a sampling methodology 
to extract proportional numbers of riparian and nonriparian values from the NLCD 2016 Wetlands 
Potential product [27]. A pixel was considered riparian (value = 100) for the sampling schema if its 
NLCD 2016 Wetlands Potential value was greater than 3 and not riparian (value = 0) for all Wetlands 
Potential values less than 3. A total of 10,000 pixels (riparian and nonriparian) were then extracted 
for independent values of the training data, based on the representative proportion of riparian and 
nonriparian pixels. The same pixel locations of three seasons of vegetation Landsat composites 
refectance and Tasselcap derivatives and slope values were then extracted as independent values for 
the model. Training datasets were modeled within the regression tree package, CUBIST, with committee 
models [33] to create a continuous product with values ranging from 0–100. This modeled riparian 
product was subsequently thresholded, with values ≥5 considered to be riparian (value = 1) and all 
values <5 considered to be nonriparian (value = 0). This thresholded riparian product was compared to 
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the DEM slope derivative to remove potential riparian commission errors. If the thresholded riparian 
product was near an area with a slope of 0 (i.e., the valley bottom), the fnal riparian mask was given a 
value of 1. All other values in the riparian mask that did not meet this logic were set to 0. 

2.4. Disturbance Mapping Process 

Disturbance mapping relied mainly on the Landsat, Events, and LFRDB datasets, and was run 
separately for each tile (Figure 1). As in previous iterations of LANDFIRE, the prototyping process 
used the Events data to determine where change occurred. Like LF 2014, MIICA [20] was used to 
identify areas where disturbances may have occurred. The MIICA algorithm identifes areas of spectral 
changes between pre- and post-year images for 2014 and 2015, respectively. Because MIICA has 
omission and commission errors associated with the process [20], LANDFIRE mapping analysts have 
developed processes to remove incorrectly identifed change by the MIICA algorithm using pre- and 
post-disturbance Landsat imagery [5]. This entire process was time-consuming and required multiple 
iterations of editing to capture all disturbances correctly within the GC and NW LANDFIRE tiles 
(Figures 3 and 4). 

Once all Landsat-detected disturbances were mapped, causality was assigned by intersecting each 
disturbance pixel with the following datasets ordered by precedence: (1) MTBS, (2) BAER, (3) RAVG, 
(4) Event, and (5) BAECV. If a disturbance did not intersect any of these datasets, then the causality was 
labeled as unknown. Additionally, the severity of each disturbance was assessed in one of two ways. 
First, if a pixel fell within an MTBS, BAER, or RAVG disturbance, it was assigned to the respective 
MTBS, BAER, or RAVG burn severity value. The remaining disturbed pixels were assigned to a low, 
moderate, or high severity class by examining the mean and standard deviation value of the early and 
late growing season dNBR images (Table 2). Whichever severity image (early or late) had the highest 
severity value for a disturbance pixel, that severity value was used. All undisturbed areas were given 
a severity value of zero. 

Table 2. Decision logic for labeling the low, moderate, and high severity classes when severity was not 
assigned by the BAER, RAVG, or MTBS reference datasets. Values for each pixel dNBR value (xpixel) 
was assigned by comparing it to the LANDFIRE tile-wide mean (µtile) and standard deviation (σtile) 
dNBR values. 

Severity Class Severity Value Decision Logic 

Low 
Moderate 

High 

1 
2 
3 

xpixel < µtile + 2σtile 
xpixel ≥ µtile + 2σtile and xpixel < µtile + 3σtile 

xpixel ≥ µtile + 3σtile 

2.5. Lifeform, EVC, EVH, and EVT Data Selection and Modeling Processes 

During the preliminary testing phase of Remap in the Clear Creek, ID, area [7], we tested 
machine-learning algorithms for the categorical modeling of lifeform and EVT classifcations including 
random forest, k-nearest neighbor, and support vector machines within the Python scikit-learn 
module [34] and See5 with boosting [35], and continuous classifcations (i.e., regression) for EVC and 
EVH including random forest, k-nearest neighbor, and support vector machines within the Python 
scikit-learn module [34] and CUBIST with committee models. In all classifcations, only Landsat 
values were used as independent modeling variables. For lifeform and EVT classifcations, See5 with 
boosting was superior in classifcation accuracy in Clear Creek, ID. Random forest was slightly better 
in prediction accuracy for EVC and EVH classifcation than CUBIST with committee models, but 
differences in accuracy were minor and CUBIST models were applied faster. We therefore decided to use 
See5 with boosting for categorical and CUBIST with committee models for continuous classifcations, 
described in the subsequent sections. 
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The LFRDB plot locations were used to perform extractions on all geospatial input data layers for 
the NW and GC prototype areas. The plot extractions were performed by FIA personnel to ensure that 
the geospatial location of any sensitive plot dataset was not revealed. Each plot was labeled by the 
extracted geospatial dataset’s value and subsequently uploaded into the LFRDB. All data contained 
within the LFRDB could then be used for modeling lifeforms, vegetation classifcation (i.e., EVT), and 
structure (i.e., EVC and EVT). 

Prior to modeling, LFRDB plots were fltered based on several criteria. First, plots without 
adequate information to be assigned a lifeform or EVT classifcation were removed from the modeling 
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data pool. Then, barren and sparse plots were set aside for a subsequent modeling process. Plots that 
occurred within areas that had been disturbed within the past 10 years, and therefore were presumed 
to be spectral outliers, were removed using past LANDFIRE annual disturbance products and the 
expected recovery period for a given vegetation type. Remaining plots were then subdivided by their 
lifeform category, including herb, shrub, or tree. Finally, a spectral fltering test was used to compare 
the individual plot sum (x) of all Landsat bands (b) values (ranging from 1 to n) to the sum (Vsum) of 
the mean (µ) and twice the standard deviation (σ) of all plot Landsat values sampled (N): 

nX 
x = bi (1) 

i=1 PN 
i=1 xi 

µ = (2)
N sP 
(x − µ)2 

σ = (3)
N 

Vsum = µ + 2σ (4) 

If the value of x (Equation (1)) was greater than Vsum (Equation (4)), the plot was discarded from 
the analysis. Discarding plots using this methodology reduced the number of plots that had spectral 
outliers for herb, shrub, and tree lifeform types. 

This “cleaned” lifeform training dataset was then used as an input for decision tree models using 
See5, with lifeform as the dependent variable and Landsat bands as the independent variables. Models 
were run over the entirety of the NW and GC prototyping areas. Once lifeform classifed products were 
completed, they were visually reviewed with high resolution imagery from GoogleEarth for accuracy. 
Where areas of herb, shrub, and tree were misclassifed, additional training data were digitized from 
high resolution data and the models were rerun. Several iterations of adding analyst-derived plot data 
to the training data and running the modeling process occurred until most lifeform classifcations 
visibly matched the lifeform patterns on GoogleEarth. Occasionally, some areas of lifeform were 
impossible to model correctly. For these rare instances, areas of herbs, shrubs, and trees were manually 
digitized and recoded to the correct lifeform class. 

A similar fltering process was performed for EVT vegetation type training data. Plots that 
occurred within areas that had been disturbed within the previous 10 years were removed if the 
expected recovery period for a given vegetation type had not been reached. Each EVT vegetation 
classifcation, except for barren and sparse classes, was examined by the spectral fltering test to remove 
spectral outliers per EVT type. Note, however, that a plot that might have been removed for modeling 
during the spectral fltering portion of the lifeform data cleaning process might be used as part of 
the EVT modeling process. As in the lifeform spectral test, the sum of individual Landsat bands per 
plot (Equation (1)) was compared against the Vsum (Equation (4)) values. EVT plot data were further 
subdivided by their Level III mapping zone and lifeform to model similar vegetation systems against 
each other. EVT plot labels within each Level III ecoregion were reviewed to ensure the plots occurred 
within the correct EVT range of distribution. Mislabeled plots either were ignored or relabeled with an 
appropriate EVT designation if a one-to-one crosswalk existed. A total of 10% of all plots per EVT 
type (i.e., test datasets) were withheld from the modeling process for an error analysis within the GC 
prototyping area at the end of the mapping process. Riparian, alpine, and barren or sparse EVT types 
were mapped separately using the binary masks developed for each. Non-riparian and non-alpine 
EVT classes were also modeled separately from the rest of the EVT datasets. 

Each training dataset had EVT as the dependent variable and Landsat bands and DEM derivatives 
as independent variables. EVT classes were modeled using the See5 (with boosting) decision tree 
modeling software package. A total of 119 EVT types were modeled in the NW and 46 in the GC. 



Fire 2019, 2, 35 12 of 26 

After examining the distribution of the values of canopy cover estimates of plots within the LFRDB 
(see Figures 4 and 5 (left images) in [36]) it was determined that additional observation derived from 
airborne lidar acquisitions should be included to improve the thematic distribution of EVC values 
(Figures 4 and 5 (right images) in [36]). For Remap prototyping, we developed a process by which lidar 
observations were combined with LFRDB plot data to develop the training dataset used to model EVC 
and EVH structure characteristics (see Figure 4 in [36]). First, an inventory of lidar data was performed to 
access lidar availability from open source resources such as EarthExplorer (https://earthexplorer.usgs.gov, 
accessed 11 June 2019) and OpenTopography (www.opentopography.org, accessed 11 June 2019), as 
well as US state distribution sites. Lidar datasets were then acquired and processed from point clouds 
(i.e., .las or .laz format) to 30-m canopy cover and height raster images (.tif format) using LAStools 
software (http://rapidlasso.com, accessed 11 June 2019). These grids were then spatially sub-sampled to 
build a set of lidar observations that represented the full range of lifeform cover and heights per LF tile 
at discrete locations in proportion to their occurrence. Next, independent variables, including Landsat 
composites, vegetation spectral indices, and topography composites, were extracted against LFRDB 
plots and lidar-derived observations to create training data required for CUBIST committee decision 
tree classifers. Lidar and reference plots that fall within recently disturbed areas were discarded 
from the training dataset. Finally, decision tree models were used to create EVC and EVH products 
(Figure 5). 
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We found that incorporating lidar data increased the amount of EVC reference data by 310% 
in the Grand Canyon and by 79% in the Northwest prototype areas. The addition of lidar data 
increased reference data in areas that are under-represented by the LFRDB reference plots alone; for 
example, tree cover ranging from 10% to 15% had very few plots in the NW and GC reference plots; 
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however, including lidar considerably increased the plots in this range, as well as in most other percent 
cover classes. 

2.6. Merging Datasets 

After all components for lifeform, EVT, EVH, and EVC datasets were completed, processes were 
developed to put the pieces together for the NW and GC prototype areas and generate the fnal maps 
(Figure 6). For compatibility, all datasets needed to be able to nest within the lifeform layer. The frst 
step in the merging of data products was to create a complete lifeform map. This was done by frst 
modifying lifeforms by EVC lifeform layers on a per-pixel basis, as follows. If a given pixel was 
classifed as a tree within the lifeform layer, and the tree EVC percent cover layer was >10%, then the 
lifeform class remained classifed as a tree; however, if the tree lifeform class was <10% cover in the 
EVC dataset, then shrub and herb EVC layers were examined following the same logic as previously 
mentioned for the tree EVC layer to determine whether the lifeform class should be shrub or herb. 
If all the EVC lifeform classes had <10% cover, the lifeform classifcation was labeled as sparse. Finally, 
barren and sparse pixel designations in LF 2014 were added to the fnal lifeform product. 
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Figure 6. Flowchart and algorithm logic for the creation of the LANDFIRE Remap prototype lifeform 
using the modeled lifeform (LF), LANDFIRE 2014 EVT (barren or sparse), and the tree, shrub, and herb 
Existing Vegetation Cover (EVC) datasets (e.g., EVCTree). 

This newly revised lifeform layer was then used to merge EVC and EVH model runs together 
for both prototype areas. Individually modeled EVH lifeform layers were merged by their lifeform 
type and recoded (Figure 7). For example, a tree lifeform pixel would be assigned a tree EVC value. 
Unique values of EVC ranged from 0–400, with 0–100 reserved for indicating unique codes (e.g., water 
(value 11), barren (value 31), and sparse (value 100)); tree pixels were coded as the sum of 100 and 
the percent tree cover, and shrub pixels were coded as the sum of 200 and the percent shrub cover. 
Herb pixels were coded as the sum of 300 and the percent herb cover. For example, an EVC of 127 
would represent a forested pixel with 27% tree cover. EVH was coded by lifeform similar to EVC, 
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except for replacing percent cover in the summation with height in meters, decimeters, and centimeters, 
respectively, for tree, herb, and shrub. Both EVC and EVH therefore indicate lifeform by their respective 
100, 200, and 300 classifcation value. Additionally, the classes including water, barren and sparse, 
urban, agriculture, and mines were added to the map from the masks described above. 
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(Veg) products including Existing Vegetation Cover (EVC), Height (EVH), and Type (EVT) using the 
modeled lifeform (LF), Veg tree, Veg shrub, Veg herb, LANDFIRE 2014 EVT barren and sparse classes, 
and additional unique input classes not equal to zero (Unique Class != 0) from water, urban, agriculture, 
and mines input layers. 

EVT data were compiled into one image per prototype area by using the lifeform layer to merge 
all the different model runs together by lifeform and specifc modeling run by mask (Figure 7). These 
included the separate models for Level III, riparian, alpine, and sparse vegetation areas. Additional 
vegetation classes were burned in, including disturbance with lifeform and water from the DSWE. 

NVC groups were cross-walked with EVT instead of modeling, to test out the process’s feasibility 
within the NW. No additional model runs were conducted for riparian, alpine, or sparse vegetation. 
Additional disturbance and water classes were burned in as mentioned previously for EVT. 

Previous studies have found that object-based image analysis (OBIA) segmentation processes 
that group nearby spectrally similar pixels together into objects can improve vegetation classifcation 
when compared against traditional pixel-based approaches [37]. To determine whether the OBIA 
segmentation approach might improve the classifcation of EVT, all Landsat bands were used within 
eCognition [38,39] to develop classifcation segments. These segments were then used to determine 
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the most common lifeform present (i.e., majority) per segment, resulting in a segmented lifeform 
classifcation map. Separate tree, shrub, and herbaceous EVT majority segment maps were then 
developed based on the previously modeled EVT classifcations. The segmented lifeform map was 
then used in conjunction with the three separate EVT maps, one map of all EVTs categorized by tree, 
shrub, or tree lifeforms (e.g., tree EVTs), to compile one segment-based EVT map. Disturbances and 
water classifcations were not segmented but were instead used “as is” from the disturbance and 
water maps. 

2.7. Error and Comparative Analyses 

Lifeform was assessed for similarity by comparing the NW and GC prototype to the LANDFIRE 
2014 Update. The overall idea was not to assess whether the Remap prototyping effort produced a 
more accurate product than LF 2014, but to ascertain how lifeform pixels changed between the two 
iterations of LANDFIRE. Disturbances that occurred between 2014 and 2015 could change the lifeform 
between the years. To deal with this potential problem, we removed all pixels that were disturbed 
in either 2014 or 2015. Additionally, all barren and sparse classifcations were not considered in this 
analysis. To compare the two products, the overall area (hectares) per lifeform class that stayed the 
same or switched classes (e.g., tree to shrub) was calculated. 

To ascertain whether including lidar data improved EVC and EVH values in the GC prototype 
area, the tree LFRDB-only, lidar-only, and combined modeled outputs were compared to withheld FIA 
plot data (N = 38). A simple linear regression was created with the withheld tree percent cover and 
height (m) from the FIA plot data versus the modeled output, and the goodness of ft (R2) was assessed. 

The EVT product for the GC prototype area was assessed by comparing the values of the stratifed 
randomly withheld values (10% by type with a minimum training data sample size of 30) with the 
produced EVT values in the GC prototype area. An error matrix was constructed to compare the 
expected vegetation classifcation from the LFRDB to the modeled output (Table 3). Conventional 
accuracy assessment metrics including overall (OA), producer’s (PA), and user’s accuracy (UA) were 
then calculated [40,41]. 

Table 3. Potential error matrix that calculates the agreement between a LANDFIRE-mapped vegetation 
product and withheld feld-validated plots contained in the LANDFIRE Reference Database (LFRDB) for 
different vegetation classes ranging from vegetation classifcation 1-N (Veg1-VegN), where N indicates 
some number of vegetation classifcations. Cell agreement between the LFRDB and modeled product 
are highlighted in gray. 

Mapped LFRDB 

Veg1 Veg2 VegN 
Veg1 
Veg2 
VegN 

Veg1/Veg1 
Veg2/Veg1 
VegN/Veg1 

Veg1/Veg2 
Veg2/Veg2 
VegN/Veg2 

Veg1/VegN 
Veg2/VegN 
VegN/VegN 

3. Results 

NW and GC prototype maps for EVC, EVH, and EVT (Ecological Systems and Groups) were 
successfully produced for the LANDFIRE prototype effort (Figures 8–11). EVC and EVH products are 
classifed products; however, they feature much fner thematic resolution than previous versions of 
LANDFIRE (Figures 8 and 9). The EVT thematic products feature a total of 150 and 55 classes for the 
NW and GC prototype areas, respectively. The NVC Group thematic product had a total of 81 classes 
within the NW (Figure 11). 
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Figure 8. Existing Vegetation Cover (EVC) classifed percent cover and Existing Vegetation Height 
(EVH) products within the Pacifc Northwest prototype area. Both EVC and EVH are classifed by 
lifeform values with values of 100s, 200s, and 300s representing tree, herb, and shrub classes, respectively. 
EVC values in percent cover can be calculated by subtracting 100, 200, or 300 from the value. EVH 
can be calculated the same way as EVC, although values are in meters (tree), centimeters (shrub), and 
decimeters (herb). All values below 100 are specifc thematic classes (e.g., water, value = 11). 
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Figure 9. Existing Vegetation Cover (EVC) classifed percent cover and Existing Vegetation Height 
(EVH) products within the Grand Canyon prototype area. Both EVC and EVH are classifed by lifeform 
values with values of 100s, 200s, and 300s representing tree, herb, and shrub classes, respectively. EVC 
values in percent cover can be calculated by subtracting 100, 200, or 300 from the value. EVH can 
be calculated the same way as EVC, although values are in meters (tree), centimeters (shrub), and 
decimeters (herb). All values below 100 are specifc thematic classes (e.g., water, value = 11). 

A segmented EVT map (Figure 12A.) was produced in addition to the original EVT map (Figure 10, 
left) for the NW. Differences in pixilation are evident when the EVT (Figure 12B.) map is compared to 
the segmented EVT map (Figure 12C.) for a portion of the NW, with the segmented map exhibiting 
reduced pixilation. Segmented EVT maps required an order of magnitude more processing time 
for production. 
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Lifeform pixel classifcations differed between the LF 2014 and Remap prototyping effort within the 
NW (Figure 13). Trees were the dominant vegetation classifcation (26.43 × 106 hectares), followed by 
shrubs (17.03 × 106 hectares) and herb classifcations (7.23 × 106 hectares). A total of 3.42 × 106 hectares 
of pixels switched from shrub and herb classes to tree. More herb pixels changed (1.93 × 106 hectares) 
to shrub than tree (0.79 × 106 hectares) to shrub. Shrub (4.88 × 106 hectares) pixels were more likely to 
change to herb than tree (0.82 × 106 hectares) to herb. 
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Figure 13. Hectares of tree, shrub, and herb in the LANDFIRE Remap prototype versus LF 2014 within 
the Pacifc Northwest (NW) and Grand Canyon (GC) prototype areas. The vegetation category assessed 
is the same color as the graph area. For example, in the NW trees category (green) 26.43 × 106 hectares 
of all vegetated and non-disturbed pixels were tree. While 24.82 × 106 hectares of the area identifed as 
tree (green) was tree in both LANDFIRE Remap and Update, 1.61 × 106 hectares of the pixels switched 
from shrub (brown) and herb (orange) to tree classifcation between LANDFIRE Update and Remap. 

Differences between the LF 2014 and Remap were also evident in the GC (Figure 13). The order of 
composition of the vegetation classes was shrub (7.99 × 105 hectares), tree (4.74 × 105 hectares), and 
herb (0.622 × 105 hectares). A total of 0.31 × 105 hectares classifed as shrub and 0.04 × 105 hectares 
of herb in Update switched to tree in Remap. The shrub class was much reduced in Remap, 
with 0.80 × 105 hectares converting from herb in Update. A smaller fraction of the tree pixels 
(0.31 × 105 hectares) converted to shrub. Finally, more herb pixels (0.45 × 105 hectares) were classifed 
as shrub in LF 2014 than herb (0.14 × 105 hectares) or tree (0.04 × 105 hectares). 

Moderate fts between the modeled percent cover of the LFRDB-only, lidar-only, and combined 
data modeled outputs compared to withheld FIA plot percent cover were evident (see Figure 7 in [36]). 
Merged LFRDB and lidar percent cover datasets resulted in the best goodness of ft (R2 = 0.51), although 
goodness of ft with lidar-only data was not dissimilar (R2 = 0.49). LFRDB-only models led to the 
worst ft (R2 = 0.43). 

Like percent cover, the LFRDB-only data modeled height map exhibited the worst ft (R2 = 0.04) 
when compared to FIA plot height (see Figure 8 in [36]). The lidar-only modeled height map had the 
best relationship with FIA height data (R2 = 0.57). When LFRDB data were combined with lidar, the ft 
of the modeled height dataset decreased compared to the lidar-only modeled height dataset (R2 = 0.53). 

In this analysis, 55 EVT classes were assessed for the GC prototype area (Figure 10), making error 
matrixes difficult to view within a standard table. Please see Supplementary Materials S1 and S2 for 
the full error matrix and summary of errors, respectively. The overall accuracy of all mapped classes 
was 52% (Supplementary S1). Of the classes with >20 plots (N = 14) of withheld data (accounting for 
81% of all withheld plots), user’s accuracies ranged from 29%–83%, and producer’s accuracies ranged 
from 5%–87% (Supplementary S1 and S2). The remaining 41 classes averaged 5 plots of withheld data, 
generally exhibiting much lower producer’s and user’s accuracies (Supplementary S1 and S2). 
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4. Discussion 

The LANDFIRE Remap prototype (2015) effort resulted in new large-scale vegetation cover, height, 
and classifcation datasets for the NW and GC prototype areas. The methodologies for producing 
these maps drew upon past LANDFIRE mapping campaigns; however, new mapping techniques were 
developed to take advantage of unlimited, free access to Landsat data, high performance computing, 
state-of-the-art mapping techniques, and unprecedented access to feld and lidar data. Assessments 
of the NW and GC prototype areas’ data products suggest that there were distinct changes to the 
lifeform product compared to LF 2014. Changes to the Remap prototype lifeform and production 
methodologies led to subsequent changes in the EVC, EVH, and EVT products. Accuracy metrics for 
the EVC, EVH, and EVT products in the GC prototype area suggest that these changes have resulted in 
products with moderate accuracies. 

It is difficult to compare the past versions of the LANDFIRE EVC, EVH, and EVT datasets to the 
NW and GC prototypes because the legends were altered between versions. Nevertheless, the lifeform 
types, into which all layers are nested, have remained consistent, allowing for direct comparisons. 
Our analysis showed differences within the lifeform tree, shrub, and herb classifcations (Figure 13). 
The largest were in the GC prototype area, where 1.75 × 105 hectares of the total pixels shifted from 
shrub in LF 2014 to tree. This change is likely due to improved strategies in assigning sparsely treed 
areas as tree rather than shrub. We noticed signifcantly more pixels correctly categorized as tree than 
in LF 2001. It is possible there was encroachment and successive growth of piñyon-junipers systems 
within the prototyping areas [42], but that is unlikely because these systems demonstrate periods of 
growth and die-off [43]. 

Another major lifeform shift was apparent in both prototype regions, where herb moved to shrub. 
Worth noting was the addition of EVC into the modeling process, which was a departure from LF 
National that potentially shifted the classifcation from herb to shrub. It is possible that there was 
some expansion of conifers into former grasslands [44], in which the conifers would exhibit shrub-like 
heights and coverage. Additionally, there has been post-fre conversion of shrubs to exotic herbs 
(e.g., cheatgrass, Bromus tectorum) within the prototyping area [45], and this conversion is projected to 
continue [46]. Therefore, increases in shrub cover within the prototype areas has more likely resulted 
from changes in classifcation rather than changes in vegetation between 2001 and 2015. 

Improvements in overall accuracy were most signifcant in EVH due to the incorporation of 
lidar data. This makes sense considering that many data sources referenced in the LFRDB came from 
disparate sources and were not necessarily collected to the rigorous standards of FIA data, for example. 
The lidar data also give a more comprehensive sampling of the potential heights present in the entirety 
of the landscape, which is clearly visible in the distribution of the heights of trees visible within the 
LFRDB-only versus combined LFRDB and lidar datasets. What is surprising, however, is that the 
combined LFRDB and lidar datasets resulted in a slightly weaker relationship between the modeled 
and FIA data. This may be because the addition of the LFRDB data overwhelmed the contribution 
of the lidar dataset, and could potentially be fxed by adding more lidar data to the training dataset 
to better encompass the full range of distribution in tree height [47] not fully represented within 
the LFRDB. 

As previously mentioned, direct comparisons between previous and current EVT products in this 
prototype area are impractical due to the altered vegetation classes. Nevertheless, general observations 
can be made by withholding percentage plot data and using it in an accuracy assessment. For Remap 
EVT, we calculated an accuracy of 52%, which was below the approximate 80% mark other large-scale 
vegetation products that have been exhibited [48–50]. However, these thematic land cover products 
had far fewer than the 55 classes mapped in the GC prototype area. Increasing the number of classes 
(i.e., map complexity) generally decreases the accuracy of a thematic map [51]. Our overall accuracy is 
therefore more comparable to thematic products with larger numbers of classes [52,53]. Additionally, 
this study leveraged data from disparate sources with varying purposes from which quality was 
not disclosed. Poor training data can reduce the quality of thematic maps [54], which most likely 
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decreased our accuracy for some EVT classes. Potential training data errors are also likely exacerbated 
by the way in which the EVT classes are assigned via Auto-Key within the LFRDB. The Auto-key’s 
accuracy ranges from 36.5%–85% [13], and subsequently can have a large effect on EVT training data 
and model accuracy. 

We applied OBIA segmentation to the pixel-based EVT product to determine if map accuracy 
would improve, and if a segmented product could be produced within the scope and time frame 
required from a national-scale production effort. Although we were successful in producing the 
segmented EVT product, the amount of time it took to perform the operation proved impractical for 
implementation for LANDFIRE Remap. Training data were not withheld; therefore, we could not 
assess the statistical accuracy of the segmented against the pixel-based EVT product. However, a visual 
comparison indicated that EVT classes were often homogenized in areas where multiple EVTs were 
expected. This suggests increased errors in areas where coexisting vegetation types are common (e.g., 
rare vegetation types occurring in small patches), as well as those that occur heterogeneously across a 
wide-ranging landscape [55]. 

This is the frst time the NVC Group product has been produced for LANDFIRE. In the future, it 
is anticipated that a national-scale NVC will become a standard LANDFIRE product. This is important 
given that NVC is the federal standard classifcation system for the US and for all federal agencies [56]. 
NVC also conforms to international vegetation classifcation standards and is similar to the Canadian 
National Vegetation Classifcation (CNVC [16]), allowing for better cross-border vegetation mapping. 

Like LF 2012–2014, Landsat composite imagery was used as the base data for all mapping efforts. 
However, in this prototyping effort, we mapped both disturbance and classifed thematic vegetation 
classes, which required two sets of image composites to be produced independently of each other. 
Image anomalies (e.g., unmasked clouds, shadows, snow, etc.) can introduce spectral artifacts that 
may result in classifcation errors. Such anomalies are less impactful to the disturbance product 
because trained analysts inspect all pixels identifed as change to ensure they were not caused by 
composite-driven aberrations. Less time was spent hand-correcting potential problematic pixels for 
the thematic vegetation classifcation image composites. Yet, an effort was made to identify and 
remove problematic Landsat scenes from the compositing process if deemed necessary. The danger 
of composite-driven anomalous pixels is potential propagation errors from lifeforms through EVC, 
EVH, EVT, and NVC. It is therefore advisable that additional time be spent examining the underlying 
Landsat image composites for the LANDFIRE Remap production effort. 

All EVT mapping was conducted by using Level III ecoregions. This allowed for subdividing 
the landscape into smaller, more-manageable processing units. However, processing smaller scales 
for all vegetation classes often results in sharp breaks between thematic classes, causing seamlines at 
unit boundaries. To remedy this problem, we found that mapping units simultaneously can reveal 
seamlines, which can be corrected during the modeling process. These units could be subdivided 
further as necessary (e.g., Level IV ecoregions), but ecologically similar areas should be mapped 
together to provide continuity among mapping classes as well as a reduction of hard edges between 
thematic classes. 

For the Remap production effort, it is important that ample time be devoted to the difficult-to-map 
classes. During the prototyping effort, limited time was spent post-processing and correcting modeled 
products. We acknowledge that additional time dedicated to improving mapping accuracies is 
necessary and an important part of the mapping process. For instance, by examining the automated 
error calculations during the draft stages of production, low-accuracy classes can be identifed and 
improved by adding training data using “expert opinion” plots, by developing new masks to control 
the mapping of specifc hard-to-map classes, or by hand-editing the maps. 

5. Conclusions 

We successfully produced EVC, EVH, EVT, and NVC LANDFIRE base maps for the NW and 
GC prototyping areas. The classifcation and error assessment methodologies presented here will be 
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implemented in the LANDFIRE Remap 2016 production effort and automated within an open-source 
framework (i.e., Python [57]) to promote transparency, reproducibility, and transferability in mapping 
processes. These automated processes will contribute to production efficiencies and data quality 
improvements in both Remap and future iterations of LANDFIRE. Other benefts include decreased 
production costs via reductions in computer- and person-time, and, perhaps, shortened production 
cycles. The LANDFIRE Remap production effort has incorporated the bulk of our recommendations 
and automated processes with as-needed modifcations to achieve the goal of producing higher quality 
maps while minimizing the difficulties identifed in this effort. 

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-6255/2/2/35/s1, S1: 
Existing Vegetation Type (EVT) error matrix that calculates the agreement between the mapped EVT and withheld 
feld-validated plots contained in the LANDFIRE Reference Database (LFRDB) for different EVT classifcations 
within Grand Canyon prototype area. Each EVT classifcation includes its code (e.g., 7011) and the actual name of 
the classifcation (e.g., Rocky Mountain Aspen Forest and Woodland). The number of cells that agree between 
the LFRDB and Modeled Product are highlighted in yellow. Total number of pixels in each column per EVT and 
percent column agreement are within bottom two rows of the matrix. Total number of pixels in each row and 
percent row agreement are within the last two columns of the matrix. If no pixels or plots were available, i.e., 
Column total = 0 or Row Total = 0, then the Percent Column Agreement value received a value of “No Plots”. S2: 
Existing Vegetation Type (EVT) classifcations and the hectares in the classifed EVT image (Hectares), number 
of pixels (Row Total), percentage of pixels in that classifcation (% of Row Pixels), percent row agreement (Row 
Agreement), most common classifcation error EVT and the total number of incorrect pixels (Primary Within Row 
Mismatch), second most common classifcation error EVT and the total number of incorrect pixels (Secondary 
Within Row Mismatch), and third most common classifcation error EVT and the total number of incorrect pixels 
(Tertiary Within Row Mismatch) within the Grand Canyon prototype area. Each EVT classifcation includes its 
code (e.g., 7011) and the actual name of the classifcation (e.g., Rocky Mountain Aspen Forest and Woodland) are 
provided for each EVT classifcation (including Primary, Secondary, and Tertiary Mismatches). Data have been 
sorted by the most frequent to the least common EVT classifcation withheld. If there are no Primary, Secondary, 
or Tertiary matches, then the cell was given a value of “None”. 
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